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the order of the critical points, and the shape of some phase boundaries are
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1. INTRODUCTION

In refs. 2 and 3 a Hamiltonian for a bipolaronic superconductor of the
form

H=v Y #A,—2t Y (b}b;+b;b}) (1.1)
<Py i 7>

has been introduced. Here b is the creation operator of a bipolaron at site
i of a lattice in configuration space, #; the bipolaron number operator, and
Y¢i. ;> the sum over nearest neighbours. In ref. 4 (cf. also ref. 5) this
Hamiltonian has been used for the discussion of high-T', superconductors.
Transforming the algebraic relations for the operators b¥, 7, into the quasi-
spin formulation, one finds the correspondence of H to the Hamiltonian of
an anisotropic antiferromagnet. In this correspondence the antiferromagnetic
phase is called “charge ordered phase” in the superconductor interpretation,
and the broken gauge symmetry in the latter is denoted as “spin flopped
phase” in the antiferromagnetic interpretation. The possibility of having
both types of symmetry breaking simultaneously (in each interpretation)
led to a controversy in the literature, whether this happens in a mixed or
in a pure phase.

We refer to the results in ref. 1, where a mean-field version of H has
been investigated. This model is obtained by homogenizing the interaction,
that is, the summation over nearest neighbours is replaced by a (lattice
dependent) “long range summation.” This corresponds to the usual mean-
field approximation, which has been often applied to the mentioned model
classes. In the latter context also the question arose, whether one traverses
a coexistence or a pure phase region in going from the superconducting to
the charge ordered phases. The two possibilities affect the structure of critical
points and critical lines. In fact, that the type of a phase transition changes
under certain external conditions has already been discussed in the context
of bi- and tetracritical points,®'® where more or less phenomenological
explanations were given.

Here we discuss the two situations in terms of a microscopic theory for
two different ensembles, founded on generalized nets of local Hamiltonians,
which enable the incorporation of singular subsidiary conditions. Decisive
for a clarification of the thermodynamic phase structure is the unambigu-
ous introduction and use of the thermodynamic concepts based on global
quantum statistical equilibrium states.

Our basic conceptual frame for the mode! discussion, concerning the
operator algebraic introduction of the mean-field interaction and of the
equilibrium states, is shortly described in Section 2. In Section 3 we sum-
marize and supplement the results, which we gained in ref. 1 for the grand-
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canonical ensemble. In particular the phase diagram is reproduced, which
shows a coexistence region for different types of symmetry break down and
macroscopic density fluctuations. It originates from the stable free energy
density surface, which is here also depicted. (Note, that the logarithm of
the partition function times the negative temperature is called “free energy”
in quantum statistics. Its thermodynamic meaning depends, however, on
the underlying ensemble.)

We then formulate in Section 4.1 a notion for the canonical ensemble,
where the particle density fluctuations are suppressed in the thermo-
dynamic limit by a net of density fixing perturbations. These kinds of
potentials can be treated in the frame of “lower semisymmetric nets,”
developed in ref. 11. Referring to results in ref. 11 we show that in this
generalized frame the mathematical properties of the limiting free energy
densities and the resulting structure for the thermodynamic equilibrium
states, defined as the minimal free energy states, are analogous to those for
approximately symmetric nets, employed in ref. 1. (Thus it is sufficient in
the present paper to communicate this structure for the more general set
up, only.) Especially, one finds that the quantum statistical equilibrium
states constitute a stable face and Bauer simplex, denoted by S(p, u),
where f# is the natural temperature and u the chemical potential. The
w*-closed extremal boundary of this simplex are exactly those homogeneous
product states, which minimize the free energy. The latter are to be inter-
preted as pure thermodynamic phases, and every equilibrium state has a
unique decomposition into these macroscopically pure, that is factorial,
states. They form the most easily accessible part of the set of equilibrium
states. As is shown in Section 4.2 they satisfy a selfconsistency condition,
which involves an effective, state dependent Hamiltonian with, in general,
broken symmetry, which is exact in the thermodynamic limit.

Section 4.3 is devoted to a detailed analysis, how the minimal free
energy values select the stable pure phase states from the set of all solutions
of the selfconsistency equation. In the canonical case, the additional sub-
sidiary condition of a prescribed, sharp particle density must be taken into
account. The interplay of the selfconsistency condition with the minimal
free energy requirement and with the fixing of a sharp particle density is
illustrated graphically in terms of free energy surfaces. All aspects are
derived from the model Hamiltonians and determine the sets of equilibrium
states S(f, u) for all values of the temperature and the chemical potential
in a unique manner.

The resulting phase diagram is described in Section 4.4. In principle,
a phase diagram in the thermostatistical framework—in contrast to the phe-
nomenological level—consists of the family of sets &(f, u) resp. €(f, n) of
quantum statistical equilibrium states indexed by the (natural) temperature
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and resp. chemical potential or particle density. A thermodynamic phase
region is then defined as such a region of the parameters (f, n), where the
sets of equilibrium states S(f, n) are not “qualitatively” different. One
indicates graphically the boundaries of the thermodynamic phase regions,
as we do in Figs. 1 and 7. For our model that means, that in each thermo-
dynamic phase region the pure phase states have the same broken sym-
metry group, giving a concise notion of “qualitative likeness.” For each
point of the phase diagram there are, however, also symmetric equilibrium
states, especially the limiting states under free (that is symmetric) boundary
conditions, which are a statistical mixture of the pure phases over a sym-
metric measure.

Such a statistical mixture over pure phases of the same type must be
discriminated from a mixture of {not necessarily pure) qualitatively different
phases. Only the latter signify “phase coexistence” in the usual thermo-
dynamic meaning,

In the canonical phase diagrams of our model, cf especially Fig. 7,
there occur product states with both a broken gauge and lattice exchange
symmetry, as well as their statistical mixtures. They constitute the so-called
M-phase region, which replaces the coexistence region of the grand-canonical
phase diagram.

In Section 5 we collect the arguments, which lead to unique limiting
Gibbs states in each part of the phase diagram. Due to the free boundary
conditions these kinds of limiting equilibrium states possess all internal
symmetries of the original local model Hamiltonians. (Symmetry breaking
boundary conditions would lead to other types of limiting Gibbs states.)
The here investigated limiting states are in fact the only symmetric equi-
librium states in each simplex S(f, n) (which is a singleton in the normal
phase region). In the present case, both purely thermodynamic concepts of
global equilibrium states—minimizer of the free energy and limiting Gibbs
states—imply each other and there arises a consistent thermodynamic for-
malism."%'® We give a general formula for the central decomposition of
the limiting Gibbs states, which in turn leads to a general formula for the
condensed fields. We discuss the difference between coexistence and M-phase
states in terms of these decomposition formulas and draw some physical
conclusions.

2. THE CONCEPTUAL FRAME OF THE MODEL DISCUSSION

Working in the frame of operator algebraic quantum statistical
mechanics, cf. refs. 14-16 and references therein, we first have to specify the
C*-algebra U of observables for our electronic system. As we want to treat
the model on a bipartite lattice #" in configuration space, we start with a
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site-algebra of the form B =8 ® B, where B~ M,(C). Later we will see
that B describes the observables for a pair of fermions, while B describes
two such pairs in different sub-lattices. As usual, we then form for each
finite, local region A€ Q:={A'c A ||A'| <0}, the double-bar denoting
the cardinality of a set, the algebra U ,:=&);.,B;, where B, is an
isomorphic copy of B at site i. The algebra U of the whole lattice is the
composition of all local observables, mathematically obtained by the
C*-inductive limit over the net U ,, A€ L, with the canonical embedding
of A, in A, for 4 = A7 This is written as the tensor product

A:= & B,

ieX

where the local algebras U, can be considered as subalgebras of A, such
that W=, g U, "

An infinite-lattice model is quite generally specified by the net of all
local Hamiltonians H,e U, <A, indexed with the finite lattice regions
Ae L. The microscopic mean-field version on a bi-partite lattice of a
Hubbard-like Hamiltonian with originally a local pair interaction, let be
given by the special net of local Hamiltonians (H ;) ;. ¢: "

Ho=op(v T aig-a( T ospewteninrr))en, @)

1Al i, ihed i, ieAd

with x'=x®1, x>=1®xeB for xeB. b7*), r=1,2 is the annihilation
(creation) operator of a local pair at the lattice site / in sub-lattice r, and
AT :=b7*b’ is the occupation number operator. The particle algebra is
characterized by the following commutation relations, which characterize
so-called hard core Bosons:

[b7*, 0] =b*b; —bibi* =6,;(20;—1),

i+ Yy i

(bT*, b} =bI*bI+bTbTF =1, (b])2=0

for r=1, 2 and ie A". All commutators between operators in different sub-
lattices vanish. We assume v, r>0 and thus can set r=1. As shown in
ref. 1, H, may be obtained as the symmetrization of a Hamiltonian with
nearest neighbour interaction,®* where the symmetrization respects the
given sub-lattice structure. As a consequence of this symmetrization, H , is
invariant under the action of the permutation group #(A) of A:

e, (H,)=H, forall oce?(A4) and Ae
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where @,: A — A is defined on elementary tensors by @, (e Xx;) =
& ica X for all A" € £, where we set (i) =i for i outside from A.

Besides the permutation symmetry (spatial homogeneity) of the
Hamiltonian, there are additional symmetries, the so-called internal sym-
metries, which can be broken in temperature states. Here are of interest the
gauge transformations and the exchange of the two sub-lattices."

In order to determine the global thermodynamic equilibrium states
(that are those of the infinite quantum lattice system), one has still to
define the boundary and subsidiary conditions for the local equilibrium
states and to specify the limiting behaviour of the parameters involved.
This formalization of the averaged influence of the surroundings as well as
of the interest of the macroscopic observer is a necessary prerequisite to
obtain a well-defined notion of global thermodynamic equilibrium.

Assume the equilibrium states of each finite system at inverse tem-
perature f=(1/kgzT)>0 be given in terms of the local Hamiltonian H ,,
A e £, which may be that of Eq. (2.1) or a modification thereof. The corre-
sponding so-called local Gibbs states w? #4e S(U ,) have the form

_tr(exp{ —BH .} 4)
tr(exp{ —BH 4})

Without changing the notation we consider w” 4 as a state on 2 by
continuation in terms of the trace state.

Given the net of local Gibbs states the global equilibrium states may
be introduced purely thermodynamically, that is without using the
dynamics and the KMS-condition in two ways, at least. The most direct
one is to determine the limiting Gibbs states. A limiting Gibbs state w is
by definition a w*-accumulation point of the net of local Gibbs states.
Since the state space S(U) of A is compact in the weak *-topology, at least
one accumulation point exists.? It is evident, that a limiting state retains a
symmetry, which is shared by all members of the converging sub-net. If the
set of w*-accumulation points is a singleton, the whole net converges, and
we call the limit the limiting Gibbs state.

We study here two forms of limiting Gibbs states. In Section 3 we
replace the H, of Eq. (2.1) by the reduced local Hamiltonians, where the
local chemical potentials are determined by a given, fixed mean particle
density, and deal in this way with the grand canonical limiting states. In
the subsequent part of our work, we supplement the local Hamiltonians
H , of Eq. (2.1) by perturbations, which fix the exact value of the particle
density in the limit. This leads to the canonical limiting Gibbs states.

WP LU, 5 Co A= PP 4)

2 w*_convergence is defined by the convergence of all expectation values.
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Having evaluated the limiting Gibbs states, a set of further global
equilibrium states is obtained by their central decompositions. (For this
basic notation cf.,, e.g., ref. 14.) Since the supports of the central measures
consist of factor states with sharp classical properties, we interpret this as
a decomposition into pure phase states.

The second way to find global equilibrium states is to calculate the mini-
mizer of the limiting free energy density. This non-equilibrium free energy
density is determined in first line again by the net of local Hamiltonians. But
one has also to prescribe a selected set of states, as the domain of definition
for this thermodynamic functional. Observe that the selection of the domain
is again a version of incorporating subsidiary conditions.

For a consistent thermodynamic formalism, both ways to treat global
equilibrium states should be compatible in the sense, that the limiting Gibbs
states are special minimizers in the domain of the free energy density. Then
their central supports are minimizers, too, under quite general conditions.

We investigate here the global equilibrium states under both aspects,
starting calculationally from the pure phase minimizers of the free energy
density.

3. THE GRAND CANONICAL PHASES

We now discuss the model at a given mean particle density n e 0, 2.
To fix it in the local Gibbs state, we incorporate the local chemical poten-
tial g , via

Hp)=H 1—psNy, Nyi= Y (A; +77) (3.1)

ied

It holds [H,,N,]=0 and for each ne]0,2[ there is a unique
u=pn)eR, such that

1
14] (P HAU N 5 =n

For each local region A, the unique z € R is denoted by u ,. For the ensemble
with fixed mean particle density, we are interested in the limiting Gibbs
state " :=w*lim ,_o w? H4*¥4) (the limit exists, see below!). Due to
construction, the state w®” of the infinite system also has mean particle
density n, given by

1
: B.n. N —
/111232 | 4] (P25 Ny =n
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Since H ,(u,) is invariant under permutations o € #(A), each limiting
Gibbs state w” " has to be homogeneous, i.e., it is an element of SF(A) =
{we@A)|w-O,=w for all 6eP =), P(A4)}. The set of homoge-
neous states S¥(A) has a well known structure: It is a Bauer-simplex with
extremal boundary 0,&7(U)={ ®¢|eeS(B)},"" where ®¢ denotes
the product state with < ® ¢; &®;c 4 X;> =[T;c 4 tr(ox;) for all Ae £ and
® ;e 4 x,€ W The decomposition of w e SF(A) into extremal homogeneous
states corresponds to the central decomposition!* of w into classical pure
phases (factorial states):

w= ® ¢ du,(e) (3.2)

&(B)

While the product states ®g¢ are elements of ,SF(U), they are not
necessarily invariant under the internal symmetries. Since a limiting Gibbs
state ®* has the full symmetry, the central measure uy , of w? " (we iden-
tify it with p, s~ of 3.2, which uses the parametrization S(B) of 9, S*(A))
has to be non-trivial. In the simplest case it corresponds to the Haar
measure of the broken group of internal symmetries. Then the support of
the central measure ug, reflects the kind of broken internal sym-
metry.(1% 20

In ref. 1 the limiting Gibbs state w? " at fixed particle density is deter-
mined in the following way: For each ne ]0, 2[ there is a u,, such that
lim 4 g 4 4(1) = uo. The limiting Gibbs state w”? " as well as the pure phase
states ® ¢ €0,S°(N) in the support of 4, , minimize the free energy density
S(B, b, @), @ € SF(A), according to the general theory of mean-field systems
defined by approximately symmetric nets of local, specific Hamiltonians.
Recall that the free energy density of w e ©F(A) with local density matrices
04(w) for given (B, uy) is defined by:

o1 1
S(B, po, @) :=/111£I}1|—A—| |:trA {QA(CO) H 4(p0) +E 04 @)In QA(W)H

In particular, we have for the specific free energy in dependence on the
pure phase product states

f(B, 1o, @) =0<0; A' )< s %) —2A< @5 b'*>< 5 b*> +<0; 6" <; b**))

1

—pol s A* +A%) +ﬁ

{o;Ing) (3.3)
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Each minimizer ® ¢ of f(f, ue, - ) has to satisfy df(f, uo, - 1)=0 and is
thus obtained by a solution of the selfconsistency condition:

exp( — Bl (@) — 1oh))

@ = e{exp(—Alhur (@)~ o)} G4
with /i=#,; +A,, and the effective one-particle Hamiltonian
her(0) = v(tr(gA®) A' + tr(pA') A%) — 2(tr(b?) b'* + tr(gb**) b')
—2(tr(gh") b** +tr(gb'*) b?) (3.5)

The minimal free energy f(f, u,) is the grand canonical potential of
phenomenological thermodynamics, that is the two-fold Legendre transfor-
mation ul"21(B, u,) of the internal energy density u = u(s, n). In its natural
variables (7T, u,) the potential f{T, u,) is a concave function. From the con-
vexity of n— ul')(T, n) we derive the thermodynamic stability condition

ou
<5;>T =0 (3.6)

As we are interested in the case which exhibits a complex structure of
equilibrium phases, we assume in the following that v>4 and T'<T,,
where T, is a solution of kzT=(/1—4kgT/v)/(artanh(,/1 — 4k zT/v)).
We find (comp. Fig. 1, resp. Fig. 2 and ref. 1): There are three particle den-
sities n, <n, <n; <1, such that for

Fluctuations
o i
° 1 n 2
vis - [P URNS SR SO -
v>4 /
b‘e r ...............................
o ; : : ;
o mm 02 ns(M 1 n 2

Fig. 1. (n, T)-phase diagram and fluctuations of the particle density » for the ensemble with
fixed ne 10, 2[.
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n<n, (h>2—ny)

wﬂ’,n=wN: ®QN! Wlth QNzexp(_é_/}heﬂ')
and heﬁ=<u’§—ﬂ> (A" + A2)
n<n<n, 2—n>n22—n,):

P 2z ds . g
w? =ws=f ®Q‘9—2 with g4 =exp(—¢ — fhy;) and
I} T

hfff:(vﬁ— >ﬁl__A(e-i.9bl* + e

[\

+<”g_"‘> A2 — A(e ~5b%* 4+ 09p?) for $e€[0, 2=[

Ny <n<ny(2—n,>n>2—n3). wh"=iwg+(l—24)weo, 4€10, [

ny<n<l(2—ny2znz21):
1 1 ) )
wﬁ’"=wco=§®Q12+§®Qzl with g, =exp(—¢& — Bh)

and A% = (on'—u) A' + (on*—p)A? for i#k=1,2 (3.7)

On = ® g is the normal phase with no broken symmetry, wg is a charge
ordered state with broken invariance of the sub-lattice exchange, and wyg is
a superconducting state with broken gauge symmetry.

All states with n,<n<n; (2—n,2n=2—n, resp.) exist only as
mixed-type phase states with the same chemical potential p,. Each
A€[0,1] fixes in the state w? "= lwg+ (1 — A) wco the ratio of the super-
conducting and charge ordered phase type. The components of this kind of
phase mixing in the coexistence region of a first order phase transition at
Ho are in general also mixed phases. The value of 4 is uniquely determined
by n=2an,+ (1 —A4) n;, because we have lim . o(1/|1]|){ws; Ns) =hng=
Hy<n3=nco=lim . o(1/|4[){@co; N4>

For n, <n <nj; we find non-vanishing fluctuations of the particle den-
sity in the state ®”, given by

o T, 2
/lllgl/l—lz<a)”"‘; Nfl>—/1‘12}2[m<wp’ ;N,Q} =(n—ny)(n;—n)>0

The minimizing free energy density of the grand-canonical ensemble,
which corresponds thermodynamically to the grand-canonical potential, is
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Fig. 2. Grand-canonical potential as function of the particle density and the temperature:
S-phase, CO-phase and coexistence region.

drawn in Fig. 2. As the free energy density is considered as a function of the
particle density, which can be done due to the relation u(n), and not as a
function of its “natural” variable x, not all points in the (kT, n)-plane can
be identified with factor states ®g in 0,S(kT, n). For the coexistence
region of the first order phase transition—represented by the two flat parts
of the free energy density—the corresponding states are given by A® og+
(1-4)®eco-

The free energy density becomes discontinuous for n=1 and T— 0,
according to the fact, that the function u(n) is not bijective for n=1 and
T=0. Therefore we find different free energy densities over the two
coexistence regions with n < 1 and n > 1, respectively. From general reason-
ing'* one knows that (T, n)— f(T, n) is upper semi-continuous, which
implies the upper value for f(T=0,n=1).

Furthermore we observe the concavity of the grand-canonical poten-
tial in the chosen variables. For the distinction of the phase transitions by
the differentiablitiy of the free energy density we refer to Fig. 4.

Finally, let us recall from ref. 1 that a limiting Gibbs state w”” is
determined here uniquely by the minimum condition for the free energy
density (not all solutions of Eq. (3.4) minimize (3.3)), the internal sym-
metries, and the given particle density n. Thus we have for each given tem-
perature and particle density a unique limiting Gibbs state.

As is illustrated in the upper part of Fig. 1, there are particle density
fluctuations only in the coexistence regions. In the charge ordered and
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superconducting regions the set S(f, u) has mixed phase states but, all of
them with a sharp particle density. In the coexistence region one obtains
also a unique limiting Gibbs state, which is, however, dependent on the
properties of the net u ,(n) for itself, and not only on its limiting value y,.
In the following Section, we compare this phase scenario with the one,
where the thermodynamic limit is evaluated under the subsidiary condi-
tions “fixed mean particle density” and “strictly suppressed fluctuations.”

4. CANONICAL PHASE DIAGRAMS

4.1. The Canonical Ensemble in Terms of Lower
Semisymmetric Nets

We consider in this Section the thermodynamic with a fluctuation free
particle density ne 0, 2[ (canonical ensemble). To illustrate the problem
we start with the local equilibrium states given by

ﬂH,,.=<wﬂH"; 0400
2 (w10

Here Q, denotes the projection onto the eigenspace of N, with par-
ticle number [#r|4|] ([x] is the smallest integer greater than xe R, ). We
can express this state in a preliminary fashion as the equilibrium state,
where the Hamiltonian H , is perturbed by coQ%, Q% :=1— Q. With the
convention 000 =0, coQF is interpretable as a w*-lower semicontinuous
functional on S(A ,):

(/)

Sy )sw— {w; Q%> :=0wlw; Q1> (4.1

Such functionals are generalizations of lower bounded seifadjoint
operators in U ,. Moreover, they can be considered as Hamiltonians of
an extended model class, which has been theoretically mastered rather
recently.!"»2Y Especially, a well-defined perturbation theory has been
developed in terms of a variational principle for the relative free energy
density.?? Equation (4.1) is an example of an extended valued, lower bounded
operator affiliated with W ,. We are going to demonstrate, that the infinite
system with non-fluctuating particle density is characterized in equilibrium
by the w*-accumulation points of a variant of the net £5 4 — w'g:d.

To avoid some technical problems, we use a “smoothed” version of the
projection Q ,, starting from the (extended valued) identity

N, _[rlA]y

005 = ol <|A| ]
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and replacing the r.h.s. by the expression P, :=g, |4| (N,/|4] —n)?, with
the assumption that g , is large but finite. While in the definition of Q , the
use of [#|A4]|] is essential (otherwise Q,=0), we can replace [n|4|] by
n|d| in the selfadjoint operator P,. Finally, we have to specify the
asymptotic behaviour of g ,: Choose a net 4 — g, such that

g4 0, for increasing A and lim 84 _ 0
Aef |A|
Thus the whole perturbation
N 2
P, := A (—A—n> 4.2
1:=84 4] 4] (4.2)

scales super-extensively in dependence on the size of the local regions. The
physical meaning of P, is obvious: inserted into the exponent of the local
distributions it has the tendency to suppress fluctuations of the particle
number density around the expectation value », while going into the ther-
modynamic limit in an arbitrary manner.? In this sense it is a smoothed out
version of 0Q7%, and w?#4* %4 is an approximation of w/%i.

Using the properties of extended valued, lower bounded operators,
a variational principle for the w*-accumulation points of the net
(wPPa*Fa) o has been derived in ref. 11. It generalizes the results of
refs. 22 and 23 and constitutes a kind of noncommutative large deviation
principle.”*” With the asymptotic behaviour of A4 - g, as prescribed above,
the conditions for a lower semisymmetric net [ref, 11, Definition 1014 are
satisfied. We find, that the density of the internal energy, given by

.1
w(w):=lim —<w; H;+ P,
Aef |A'

3 The choice of P, is rather arbitrary. Other examples can be constructed with the help of a
positive function of the particle density operator with an absolute minimum at the given
ne]o,2[.

“In ref. 11 everything is formulated for sequences. If we use sequences (A,),en Wwith
A,c A, ,, for all neN that satisfy the following condition; for each 4 € £, there exists a
ne N, such that 4 < 4, and the limits are independent of the chosen sequence, then the net
limit exists [ref. 25, Appendix]. For our model, this is always the case. In this sense we
replace the results and definitions for sequences by those for nets.
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exists for all we&F(A), but only in the sense that w— u(w) is an
extended-valued, w*-lower semicontinuous function. Together with the
entropy density

S*(Waw— s(w) := —lim — : 04(w)In g (w))
Aeg |A|

(where g (@) is the density matrix which represents w|q,), we find that the
free energy density exists in a generalized, but well-defined sense, and con-
stitutes again the basis for a concise theory of thermo-statistical equi-
librium states.

Theorem 4.1. Let the model be defined by the lower semisymmetric
net (1/|4|)(H 4+ P,), as introduced above, and let the thermodynamic
limit be performed along the directed set £.

(i) The limiting free energy density f( 8, n, w) exists as an extended-
valued, w*-lower semicontinuous, affine function of w and is given by
(EP(%I)aa)—»f(ﬁ, n, ) :=u{w)—(1/f) s(w), where the right hand side is
described in the preceding paragraph.

(ii) The set of equilibrium states &(f, n), defined as the minimizers
of f(B, n, ), is a w*-compact Bauer-simplex and a stable face of S()
(where stability is meant in the sense of ref. 14: Each barycentric,
orthogonal decomposition of a state in &(f, n) is supported in S(f, n)).

(iii) Any w*-accumulation point @ " of the net (w#f4*%4) o mini-
mizes the free energy density S7(U)s w — F(§, n, w).

(iv) The unique extremal decomposition in S(f, n) (which defines
physically the decomposition into pure phases) coincides with the central
decomposition and with the unique decomposition into product states
®0€d (SP(A). Thus the minimum of SP(A)s w — f(f, n, w) attained in
a limiting Gibbs state @#" is attained also in the set of product states
®eed, SF(A):

(B, n, &P =inf{ f(B, n, w) |we SP(A)}
= nf{fﬁ n, )| wed, SP(A)}
inf{ f(f, n, ®¢) |0 S(B)} =: f(B, n) (4.3)

(v) The minimal free energy f has the natural variables (7, n) and
has the meaning of a free energy in phenomenological thermodynamics,
that is the first Legendre transform of u(s, n). It is concave in T and convex
in n.
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Proof. Since our net of local Hamiltonians H , with perturbations P,
fulfils the assumptions for a lower semisymmetric net, we can apply ref. 11
to our situation to get (i). We then observe that the Bauer maximum prin-
ciple in the form of ref. 14 (read as a minimum principle for a concave,
lower semicontinuous function on a compact, convex set) implies the set of
minimal states S(, n) to form a stable, w*-compact face of S¥(). Then
by the face property the extremal boundary of &(f, n) is the compact inter-
section of &(f, n) with 9,S7() and thus the extremal decomposition in
S&(B, n) coincides with the extremal decomposition in S%(?1). By means of
the theory of large automorphism groups,®® applied to the permutation
automorphisms, one shows the latter to equal the central decomposition.
By the preceding arguments the extremal decomposition in S(f, n) is
unique and S(f, n) is a simplex with compact extremal boundary, ie.,
a Bauer simplex, which gives (ii). Property (iii) we take again from ref. 11.
In (iv) the foregoing results are combined and supplemented by the fact,
that each state in 9, S*(U) is a product state. Thus the pure phase states
are indexed by density operators in S(B), and the minimalization of the
free energy density may be reduced to run over S(B). (v) follows directly
from (i) and from (s, n) — u(s, n) being convex in both variables. ||

4.2. The Canonical Pure Phases

According to the results of the preceding subsection we have for our
singular, particle density fixing Hamiltonians the same structure of equi-
librium states as for usual mean-field theories in terms of approximately
symmetric nets, and thus we have the analogous scheme for calculating the
pure phase states.

The limiting free energy density for pure phases ®oe€d,S*(A) is
calculated directly as

7o, ®Q)=u(®9)—%S(®Q)

05 A1) <0; A% — 2< 03 B> <5 b + < ') <05 6*))
1
B

+o00  for (g;A'+A* #n

= +=<g;Ing> for (o, A'+A%D =n (4.4)

This means, that the minimum of the free energy density is attained only
for states ® ¢ with particle density n, since for other states the free energy
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is infinitely large. This implies that each limiting state @# ", which mini-
mizes the free energy, has a fluctuation-free particle density. Because of this
the equilibrium states of the new ensemble muss differ—at least in the
coexistence region of the phase transition—from the grand-canonical equi-
librium states, which exhibit density fluctuations. In the following, we use
the free energy (Eq. (4.4)) and Theorem 4.1 to determine the pure phases
®e.

Each g€ S(B) with f(8, n, ® )= f(B, n) is a product state ¢, ® ¢,
with QLZE@(%)Z Take an arbitrary ¢eS(B) and set g, :=¢|lgeg1,
02 :=0|1@®. Then we find

-~ ~

S(Bn, ®0)—f(B,n, ®(01®02))

(tr(e In o) —tr((¢, ® 0,) In(0, ® 0,)))

(tr(e In ) —tr(g In(0, ®¢,)))

== ™™=

1
= _ES(Q|91®92)>0

S(-}-) is the relative entropy on S(B) with sign and notation as in ref. 15,
Equality holds if and only if ¢ =0, ® ;. Thus we find for f(Bn, ®o)=
f(ﬂa n), that ¢ =g, ® g, € S(B).

The minimum principle for the free energy S(B)sg— f(f, 1, o),
Egs. (4.3), (44), may be expressed in terms of a function f* M > R, M :=

{h=hy® h, e B |spectrum(h, ,) = [0, 1]},
M3 h— f(h) :=vtr(h,A') tr(h,A%) — 2(tr(h, b'*) tr(h,b5?)

+tr(h, bY) tr(hyb?*)) + % tr(k1n k)

which has to be minimized under the subsidiary conditions

tr(h) = tr(h,) = tr(hy) =1,  and o
tr(h(A" + A2)) = tr(hy AY) + tr(hy#2) = '

The first condition in Eq. (4.6) guarantees that the minimizer & of [ is a
product state on B, and the second one fixes the particle density according
to Eq. (4.4). Note that the minimizers of Egs. (4.5), (4.6) are in the interior
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of M, ie., if 0 =0, ®¢, with f(B, n, ® ¢) = f(B, n), neither g, hor g, is a
pure state in S(M,(C)). This is shown directly by the variation of f near
the boundary of M with states g, where tr(g(A'+4?)) is fixed (comp.
ref. 23).

Thus f in Eq. (4.5) is minimized in the interior of M, ie. in
{h=h,®h,eB |spectrum(h; ,) < ]JO, 1[} which is an open set in B. We
determine the extrema of f with the subsidiary condition Eq. (4.6) in a
standard manner by introducing Lagrange parameters [ref. 23, Section 5]
and find the following necessary condition for the minimizers o of
f(B, n, ®p), expressing extremality of the free energy under a subsidiary
condition:

Proposition 4.2. Each ¢e&(B) with f(f,n, ®¢)=/f(8,n) is a
solution of

yo S Plen(@) =) o tr{exp(=flhenl) ) i)
tr{exp(— Blhale) — i)} tr{exp( — Blhuale) — )}
(4.7)

The Lagrange parameter u is determined by the second equation as a func-
tion of n, and Ag(g) is the state-dependent effective Hamiltonian, given in
Eq. (3.5).

Observe that Eq. (4.7) is rather similar to Eq. (3.5), but in fact more
involved, since here the value of the chemical potential has also to be
calculated selfconsistently. After having solved Eq. (4.7) the physical
(stable) solutions are selected by the minimality of the free energy.

4.3. Comparison of Free Energies

Let us compare the pure phases ®g¢ for the grand-canonical and
canonical subsidiary conditions and by this identify the latter equilibrium
states. As described in the preceding subsection in both cases they minimize
a functional of the free energy (Eq. (3.3) and (4.4), respectively). While in
the first case the variation is extended at a fixed chemical potential uq(n)
over all states ® g, ¢ € S(B), we vary in the second case over all states ® ¢
with {g; A> =n and have uy,=0 in the free energy. A necessary condition
for the minima is expressed in terms of the selfconsistency conditions,
Eq. (3.4) and (4.7), which formally have the same form. Because of the sub-
sidiary condition < g; #> =n for the second ensemble, the Lagrange multi-
plier x is varied to find solutions of (4.7), while the chemical potential
Ho in Eq. (3.4) is fixed. Consequently, the lowest value of the free energy
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density f( 5, uo(n), ® ), Eq. (3.3), may differ from the minimum value of
F(B, n, ® 0), Eq. (4.4). While the chemical potential u, in Eq. (3.3) arises as
a consequence of a constraint at each step toward the thermodynamic
limit, the condition for the particle density in the second case appears only
after the thermodynamic limit having been performed, and only then u
attains via # a well determined value.

Let us analyze the phase selection in the grand-canonical case more
closely. In the coexistence region in between of the S-CO boundaries, there
are N- and M-phase solutions of Eq. (3.4) that do not minimize the free
energy. In Fig. 3 this fact is illustrated, showing the free energy density for
the M-phase of the grand-canonical ensemble forming an arch over the
coexistence region.

Other aspects are exhibited in the (7T, u)-diagram, where the coexis-
tence regions of the S-type and CO-type phases shrink to lines. They are
determined by the intersection of the two corresponding grand-canonical
free energy densities as is shown in the first part of Fig. 4. This visualizes
that the free energy densities for the S- and the CO-phases respectively,
where they are not minimal, do correspond to non-equilibrium states.

By means of the second part of Fig. 4 the different types of phase
transitions can be observed in a straightforward manner: f(kT, n) varies
smoothly on the S-N and on the N-CO boundary, whereas it has different
left-hand and right-hand derivatives on the S-CO boundary. For the latter

fact look again to the first part of Fig. 4.

H
1
!f
|
ff
|
[
|
|
5
|
|
-

g
12 13 14

11 %

Fig. 3. Grand canonical potential as function of the particle density and temperature:
S-phase, CO-phase, coexistence region and M-phase.
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Fig. 4. Grand-canonical potential as function of the chemical potential and temperature:
The first picture shows the complete surfaces of the grand-canonical potentials for the S-phase
and the CO-phase, which means equilibrium and non-equilibrium values. The second picture
shows only the minimizing (equilibrium) values for the grand-canonical potentials of the N-,
S- and CO-phase.

An overview on the different phase regions is also provided by the
(u, n)-diagram of Fig. 5. The solid line u = u(n) refers to the stable phases
of the grand-canonical ensemble. The horizontal part of this line with
u(n) =y, describes the coexistence region with the extremal densities n,
and n,. This coexistence region replaces by its lower values of the free
energy three parts of the pure phase regions: the superconducting phase
ne[n,,n,], the mixed phase ne[n5, ny], and the charge ordered phase
ne[ns, ny]. The function u=pu(n) along the pure phase states in ne
[n,, ny] is depicted by a dashed line. This dashed line violates the stability
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Fig. 5. The chemical potentials yo and the particle density n for S-, CO- and M-type solu-
tions of Eqs. (3.4), (4.7). The solid line should be read as n(u,) for the minimizers of
S(B, uo,+), Eq. (3.3), while the dashed line u(n) results from the chemical potential g,
Eq. (4.7), for minimizers of /{8, n, -), Eq. (4.4).

condition (3.6) for ne[n5, ny]. Observe that the coexistence condition
p(ny)=u(n)=pu(n,), Yneln,, ny], which leads for fluid systems to the
Maxwell rule, is accompanied here by f(T,u., n,)=f(T,u.,n)=
AT, u,, ny), Vue[n,,ny]. This is a direct consequence of the intersection
of the free energy surfaces, cf. Fig. 4, and has no counterpart with fluid
systems.

In contrast to the above, for the canonical ensemble we have to use
the variational principle for f( 8, n, ), Eq. (4.4), which depends on the par-
ticle density # via the subsidiary condition for the one-cell states g. Observ-
ing this one finds that for n<n), (n>=n}) the S-solutions (CO-solutions)
minimize the functional f( B, n, +) and for n, <n <n’y the M-phase states are
now the physical (stable) solutions.

Figure 6 shows the canonical free energy density for the S-, CO- and
the M-phase. The free energy density for the M-phase, being the minimum
of the three surfaces, corresponds to the stable thermodynamic equilibrium
state, whereas the corresponding free energy densities for the S- and the
CO-phase on this region of 0,&(kT, n) are non-equilibrium free energy
densities. This leads to a drastic change in the phase diagram.

4.4. Canonical Phase Diagram

In the preceding Subsection the canonical, n-dependent free energy has
chosen the physical states among the solutions of the selfconsistency equa-
tions. Let us analyze the resulting phase diagram, which is depicted in Fig. 7
and again in Fig. 8 with the stable thermodynamic free energy surface.

The N-CO and N-S boundaries have not changed in comparison to
the phase diagram in Fig. 1. But we have already noted that the first order
transition between the S- and the CO-phase cannot take place due to a too
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i 12
0.6 0.8 "

Fig. 6. Canonical Free Energy: S-Phase, CO-Phase and M-Phase.

high free energy, Eq. (4.4). At least in the S-CO coexistence region there
have to be differences in the phase-diagrams: For particle densities
n,<n<ny (or 2—ny<n<2—n,) and T<T. there is a new kind of a
phase, the so-called M-phase, with broken gauge symmetry and broken
invariance under sub-lattice exchange. The arising S-M and the CO-M
transitions are continuous with a qualitative change of the equilibrium
states. This is made manifest not only in the different broken symmetries of
the pure phase states, but also in the different topological structures of the
sets &(f, n). From the latter one sees the combination of qualitative
changes with smootheness, which is described in general mathematical

WG B

kel v>4 N
@'E b co

o i H ;
o n(M (N na(M 1 n 2

Fig. 7. (m, T)-phase diagram of the model (thermodynamic limit at particle density
ne 10, 2[ with suppressed fluctuations).
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Fig. 8. Canonical free energy as function of the particle density and the temperature:
N-phase, S-phase, CO-phase and M-phase.

terms in ref. 13. Thus the S-M and M-CO transitions are phase transitions
of the second kind and the transition points, which make up the boundary
lines of the M-phase region, are critical points. The boundaries can be
determined by a Landau expansion of the free energy density in Eq. (4.4)
together with the selfconsistency condition, Eq. (4.7).

The free energy density f(k7, n) in Fig. 8 varies smoothly on all phase
boundaries, showing all phase transitions to be of second kind. We also
obtain the confirmation, that the free energy density for the canonical
ensemble is a convex function of n in contrast to the grand-canonical
potential being concave. This indicates the two different types of thermo-
dynamic ensembles, resp. potentials.

Apart from the choice of v, #, and the parameterization of S(B), we
have found the same boundaries as given in ref. 2. In particular, we find
n,<n, and nj<n,, that is, the boundaries for the region of the pure
phases with mixed properties are shifted with respect to the boundaries of
the coexistence region in the grand-canonical case. Since all these features
of our phase portrait coincide with those of the somewhat formal mean-
field approximations for a short-range, bipolaronic superconductor model
in ref. 2, we have succeeded in transforming the manipulations of ref. 2
into a microscopic model, which is uniquely given by a net of local
Hamiltonians (including the density fixing perturbations).

Since the (unchanged) N-CO and N-S boundaries are also critical
points, we have in the meeting points of all four phase regions examples of
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tetra-critical points. The flat minimum of the free energy at this point is due
to an extremality with respect to four order parameters.

5. LIMITING GIBBS STATES AND CONDENSED FIELDS

The calculation of the pure phase states reveals that for each type of
symmetry break down, characterizing the different thermodynamic phase
regions, one has just one orbit of lower symmetric pure phases with respect
to the original internal symmetry group, or to the broken symmetry group.
Since the local perturbations in the net of model Hamiltonians are
invariant under gauge and lattice exchange transformations, this invariance
takes over to the singular, density fixing perturbation in the thermo-
dynamic limit and to the corresponding free energy. The associated net of
local Gibbs states has, therefore, symmetric limit points, which are mini-
mizers of the free energy, cf. Theorem 4.1. By the same reasoning as in ref. 1
we conclude, that in each thermodynamic phase region there is a unique
canonical limiting Gibbs state. More specifically, the limiting Gibbs state in
the N-, S-, and CO-phase regions are the same as wy, wg, and weo for the
model in the grand canonical equilibrium (comp. Eq. (3.7)). In the
M-phase region the solutions ¢ of Eq. (4.7) with minimal free energy den-
sity 7(8,n, ® ¢) = J(B, n) constitute one orbit for the gauge transforma-
tions combined with the sub-lattice exchange. This allows in each phase
region to express the central measure fig , of the unique limiting Gibbs
state @# " in terms of the corresponding Haar measure of the broken sym-
metry group.®® !> Since the Haar measure is unique up to normalization,
we have in each S(f, u) just one state, which is invariant under the inter-
nal symmetries. Its central support comprises, therefore, all of the extreme
boundary of S(f, u). Given the limiting Gibbs state, one finds all of the
pure phase states by the central decomposition, and thus all of &(f, u) by
pure phase mixtures, where inversely &(f, u) gives the unique symmetric
state, coinciding with the limiting Gibbs state.

Altogether we arrive at the following situation:

Theorem 5.1, Let the model in the canonical ensemble be defined
by the lower semisymmetric net (1/|4|)(H ,+ P,), as introduced previously.

(i) In each thermodynamic phase region there exists a unique limit-
ing Gibbs state for this net. The central support of the limiting Gibbs state
comprises all of the pure phase states, which constitute one orbit of the
broken symmetry group defining the thermodynamic phase region. The
whole Bauer simplex of the equilibrium states is thus uniquely determined
by the limiting Gibbs state, and vice versa.
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(ii) The limiting Gibbs state in each thermodynamic phase region is
a special case of the following general integral representation, constituting
the central decomposition:

= /1] 1 dg
~fon _ 3 _ 8 il
ohr=| <2(®g,2)+2(®9n)>2n

with o5 =exp(—&—phS),  i#kell, 2} (5.1)
where

h.i9k=(vni_'u)ﬁl_Ai(e—isbl*+ei8bl)+(Unk_lu)ﬁZ_Ak(e—i9h2*+ei9b2)
(5.2)

for $€[0, 2n[. The quantities n, = tr(gA'), n, =tr(gA®), and (4,/2) e =
tr(gb'), (4,/2) e ¥ =1r(gh*) are determined by those solutions ¢ = g3 of
Eq. (4.7) which minimize the free energy (4.4) for prescribed (f, n).

Proof. The arguments for (i) have been given in the text preceding
the present Theorem, and (ii) uses the solutions of the selfconsistency equa-
tions. It is clear that in the different thermodynamic phase regions different
mean-field values in the effective one-cell Hamiltonian (5.2) arise. Espe-
cially in the M-phase region all mean-fields »; and 4, have non-vanishing
values, which differ from each other in the sublattices. Thus, these values
may be distributed among the two sublattices in two different manners,
which gives the additive decomposition in the integrand of Eq. (5.1). One
has now only to verify, that all pure phase states, as given in Eq. (3.7), are
special cases of the integrand in Eq. (5.1). |

The determined limiting Gibbs states describe the thermodynamic
equilibrium in fully symmetric surroundings resp. state preparations, which
have no bias with respect to the internal symmetries. The possible values
of the order parameters, resulting from the spontaneous symmetry break-
ing, should be defined quite generally as the parameters for the central
decomposition of the limiting Gibbs states. This is an essentially unique
definition, which does not depend on a special calculation method as, e.g.,
the largest eigenvalues of a transfer matrix. For our special model class we
obtain the mean-field values as order parameters. Thus the limiting Gibbs
states play a basic role, although they may be evaluated directly as a limit
only in the most simple forms of a superconductor model.?” They deter-
mine also the Hilbert spaces of the reconstructed quantum theory via their
GNS-representations, where the decomposition into the superselection
sectors is given by the central decomposition Eq. (5.1) (cf the spatial
decomposition theory in ref. 14).
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It is mostly in this representation, where the effective dynamics is for-
mulated, with its spectrum depending on the thermodynamic state variables,
that is here depending on (f, n). As will be elaborated for the present
model in detail elsewhere, one can also formulate a C*-dynamical system
(cf. also ref. 28). There not only the dynamics but also the C*-algebra may
be f-dependent. The set of its f-KMS-states will be shown to be much
larger and less specific than the limiting Gibbs states together with their
central decomposition states.

Using the central decomposition of the representation von Neumann
algebra, gained by the weak closure of the represented quasilocal algebra
(and comprising the just mentioned pf-dependent C*-algebra), we can
determine the condensed field operators of the system, which are elements
in the center of this von Neumann (resp. C*-) algebra. Let us have a look
on the annihilation operator for condensed pairs and on the macroscopic
observable “particle density” (in a sub-lattice), constructively defined by
the following mean ergodic averaging limits associated with the translation

group:

b .

1
-=s-li Bn r
sAelm,2 11 (l/” ,EA b,>, and

(5.3)

1
ﬁz,n 1=s-lim Hﬁ’n <7 Z ﬁ:)

Aeg ] IieA

with the sub lattice index r=1, 2. These averages over the whole lattice
exist in the strong operator topology of the GNS-representation I7%" of
@*" and constitute a mapping (conditional expectation) into the center of
the representation von Neumann algebra. (This mapping is characteristic
for all so-called large automorphism groups.‘*®) Using the central decom-
position of @#", Eq. (5.1), the charge ordering and superconductive collec-
tive properties are reflected in the structure of the diagonal field operators
as follows:

4, ® . d3\ 4, @ dg
1 =—1 — _— ——2‘ _1\91] -~ .4
bpn 2 ‘[[O,Zn[e 1]3<2ﬂ>@ 2 J[0,2n[e 9<2”> G4
A Y |

® , d9 ® . ds
2 22 —i8 etk “B = 55
bs.n 2 [[0,27:[ s <2ﬂ>@ 2 Lo,Zn[ co <2”> )

and

fip ,=n 1 @n,1, iy =m0 @n,1 (5.6)
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Again (4, ,/2) e™* and n,_, are the sublattice expectation values of 5" and
A" as introduced above. We see, that the condensed pair operators do not
vanish in the superconducting phases, where by definition 4, ,> 0, and the
charge-ordering is expressed by n, #n,. Consequently, we have b} , #b3
and Ay , ##5 , in the M-phase region. Both types of symmetry break down
may be recognized in this way from the condensed pair operators. Since the
central decomposition expresses an additive superposition of statistical
possibilities, Eq. (5.4) indicates an equal likelyhood for the phase angle
values and the two amplitude values (gap parameters) of the averaged field
on sublattice 1. Equation (5.5) gives the same for the condensed field on
sublattice 2. Term-wise comparison of both integral expressions reveals a
strict phase correlation and a strict anti-correlation for the amplitudes
between the sublattices in the M-phase region. Note that the averaged field
is often called “macroscopic wavefunction” (for an interesting comment on
this notion cf. ref. 29 and for “off-diagonal long range order” in super-
conductors cf. ref. 30).

The order parameters 4/2=4(4, +4,) and 4,/2 for the S- and the
M-phase are shown in Fig. 9. It is observed that 4,/2 is approaches zero
on the M-CO boundary and reaches the S-phase order parameter on the
S-M boundary, attaining even larger values in between.

In the coexistence region of the grand canonical situation one has
either superconductivity or charge ordering for a pure thermodynamic
phase. That is, the amplitudes of the condensed field in the superconduct-
ing phase on the sublattices always are equal. The coexistence with the
charge ordered phase multiplies the amplitude with a probability factor.
Since both ordering phenomena are compatible and have apparently the

Fig. 9. Order Parameters 4 and 4,: S-Phase and M-Phase.
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same specific weight the thermodynamic theory would predict preparation
methods, where the coexisting charge ordered and superconducting phases
are not spatially separated on a mesoscopic scale. The point is, that they
can be separated, in principle. In the antiferromagnetic interpretation of
our model a coexistence region for spin flopped and antiferromagnetic
ordering has in fact been established.(3-3%

In sharp contrast to the coexistence phase the M-phase exhibits both
ordering phenomena in each mesoscopic space region for any preparation
method. Since the interpretation of the present model as a high-T, super-
conductor is rather involved,’ it is not so clear, how to confirm
experimentally the predicted M-phase. A related M-phase exists, however
for superconductors with paramagnetic impurities.(343%)

Instead of trying a spatial separation of two phases the traditional
thermodynamic methods of studying the specific heat across the boundaries
of the coexistence resp. M-phase region should reveal, whether one has a
phase transition of the first (discontinuous) or second (continuous) kind.
For most high-T, superconductors one has a singularity, indicating the
second kind and M-phase.

As a final remark we want to relate the present model to another class
of models discussed in the context of high-T, superconductors (see ref. 37
for a general overview), namely the Hubbard model in a generalized mean
field approximation by the composite operator method.* 3

Despite the big differences in both types of approaches to the Hubbard
model here the bipolaronic and there the fermionic composite operator
approach they both stress the importance of doping near half filling. For
both kinds of models the combination (be it a pure phase or a coexistence
region) of a charge ordered (antiferromagnetic) phase and a phase with
broken gauge symmetry occurs around half filling. For a large class of
materials the maximal T, is reached by doping near half filling, what coin-
cides with the present model, if the M-phase region is “small.”
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